Proof of Sod's Law
Let the number of preventable events that maybe expected to occur equal x.
The probability of any one of those events occurring is 1/x.
Let us take x = 5 the probability = 1/5 = 20%.
Each event has a 20% chance of occurring.
If we prevent one of those events from occurring then the probability is now 1/x-1.
If x= 5, x-1 = 4 The probability = 1/4 = 25%.
The probability of each event has increased as the number of events decrease.
If there is only one event probable of occurring then 1/1= 100% = Certainty
[ If all events are prevented from occurring then 1/0 = infinity [though it may be taken as certainty.]
Thus the probability of the unexpected event is certainty or,
'Whatever can happen, will happen'
QED
Friday, 21 May 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment